Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Journal of Central South University(Medical Sciences) ; (12): 1153-1158, 2021.
Article in English | WPRIM | ID: wpr-922597

ABSTRACT

Myosin light chain 9 (MYL9) is a regulatory light chain of myosin, which plays an important role in various biological processes including cell contraction, proliferation and invasion. MYL9 expresses abnormally in several malignancies including lung cancer, breast cancer, prostate cancer, malignant melanoma and others, which is closely related to the poor prognosis, but the clinical significance for its expression varies with different types of cancer tissues. Further elucidating the molecular mechanism of MYL9 in various types of malignant tumor metastasis is of great significance for cancer prevention and treatment. At the same time, as a molecular marker and potential target, MYL9 may have great clinical value in the early diagnosis, prognosis prediction, and targeted treatment of malignant tumors.


Subject(s)
Humans , Male , Biomarkers , Lung Neoplasms , Myosin Light Chains/metabolism , Prognosis , Prostatic Neoplasms
2.
Journal of Breast Cancer ; : 185-195, 2019.
Article in English | WPRIM | ID: wpr-764270

ABSTRACT

PURPOSE: Cancer cells develop acquired resistance induced by chemotherapeutic drugs. In this study, we investigated the effects of brief treatment with cytotoxic drugs on the phenotype of breast cancer cells. METHODS: Breast cancer cells MCF7 and BT-474 were briefly treated with paclitaxel or doxorubicin. Clonogenic, migration, and invasion assays were performed on the treated cells. Western blot analysis and RhoA activity assay were also performed. RESULTS: Breast cancer cells when briefly treated with paclitaxel or doxorubicin showed reduced clonogenic ability. Doxorubicin, but not paclitaxel, augmented cell migration and invasion. The invasion-promoting effects of doxorubicin were lost when the two drugs were sequentially used in combination. Myosin light chain (MLC) 2 phosphorylation and RhoA activity were upregulated by doxorubicin and downregulated by paclitaxel. Pretreatment with RhoA inhibitors abolished the migration- and invasion-promoting effects of doxorubicin. CONCLUSION: Doxorubicin activates the RhoA/MLC pathway and enhances breast cancer cell migration and invasion. Therefore, this pathway might be explored as a therapeutic target to suppress anthracycline-enhanced tumor progression.


Subject(s)
Blotting, Western , Breast Neoplasms , Breast , Cell Movement , Doxorubicin , Myosin Light Chains , Paclitaxel , Phenotype , Phosphorylation , Up-Regulation
3.
The Korean Journal of Physiology and Pharmacology ; : 437-445, 2018.
Article in English | WPRIM | ID: wpr-727575

ABSTRACT

α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms, but the mechanism responsible for this activity has not been determined. To determine the role played by ICB on the regulation of vascular tone, we investigated the inhibitory effects of ICB on vascular contractile responses by adrenergic α-receptor agonists. In addition, we investigated the role on myosin light chain (MLC) phosphorylation and cytosolic calcium concentration in vascular smooth muscle cells (VSMC). In aortic rings isolated from C57BL/6J mice, ICB significantly attenuated the contraction induced by phenylephrine (PE) and norepinephrine (NE), whereas ICB had no effects on KCl (60 mM)-induced contraction. In vasculatures precontracted with PE, ICB caused marked relaxation of aortic rings with or without endothelium, suggesting a direct effect on VSMC. In cultured rat VSMC, PE or NE increased MLC phosphorylation and increased cytosolic calcium levels. Both of these effects were significantly suppressed by ICB. In conclusion, our results showed that ICB regulated vascular tone by inhibiting MLC phosphorylation and calcium flux into VSMC, and suggest that ICB has anti-hypertensive properties and therapeutic potential for cardiovascular disorders related to vascular hypertension.


Subject(s)
Animals , Mice , Rats , Aorta, Thoracic , Calcium , Cytosol , Endothelium , Hypertension , Lignin , Muscle, Smooth, Vascular , Myosin Light Chains , Myosins , Norepinephrine , Phenylephrine , Phosphorylation , Plants, Medicinal , Relaxation , Schisandra
4.
Rev. Assoc. Med. Bras. (1992) ; 63(10): 904-909, Oct. 2017. tab, graf
Article in English | LILACS | ID: biblio-896298

ABSTRACT

Summary Objective: To investigate the changes in serum cardiac myosin light chain 1 (CMLC-1) levels in children with fulminant myocarditis (FM) during continuous blood purification (CBP), as well as to analyze its correlation with other laboratory indexes. Method: Twenty-four (24) children with FM who underwent CBP were enrolled. Before and during treatment (48 and 72 hours after treatment, or death), the optical density value of serum CMLC-1 was measured using enzyme-linked immunosorbent assay, and then the serum CMLC-1 concentration was calculated. The correlations between CMLC-1 OD value change and laboratory indexes including creatine kinase-MB (CK-MB), troponin, myohemoglobin and N-terminal pro-brain natriuretic peptide (NT-proBNP) were analyzed. Results: The serum CMLC-1 concentration significantly increased in the children with FM and decreased obviously during CBP therapy. In the same period, the change of CMLC-1 concentration were positively correlated with creatine kinase-MB (r=0.528), troponin (r=0.726), myohemoglobin (r=0.702), and NT-proBNP levels (r=0.589). Conclusion: The serum CMLC-1 concentration increases significantly in children with FM, but CBP therapy can effectively control this increase.


Subject(s)
Humans , Child , Hemofiltration/methods , Myosin Light Chains/blood , Myocarditis/blood , Myocarditis/therapy , Peptide Fragments/blood , Reference Values , Time Factors , Troponin/blood , Enzyme-Linked Immunosorbent Assay , Biomarkers/blood , Statistics, Nonparametric , Natriuretic Peptide, Brain/blood , Creatine Kinase, MB Form/blood , Myoglobin/blood
5.
The Korean Journal of Physiology and Pharmacology ; : 609-616, 2017.
Article in English | WPRIM | ID: wpr-728751

ABSTRACT

Ardipusilloside-I is a natural triterpenoid saponin, which was isolated from Ardisia pusilla A. DC. The aim of the study was to evaluate the stimulation of ardipusilloside-I on gastrointestinal motility in vitro and in vivo. The experiment of smooth muscle contraction directly monitored the contractions of the isolated jejunal segment (IJS) in different contractile states, and the effects of ardipusilloside-I on myosin were measured in the presence of Ca²⁺-calmodulin using the activities of 20 kDa myosin light chain (MLC₂₀) phosphorylation and myosin Mg²⁺-ATPase. The effects of ardipusilloside-I on gastro emptying and intestinal transit in constipation-predominant rats were observed, and the MLCK expression in jejuna of constipated rats was determined by western blot. The results showed that, ardipusilloside-I increased the contractility of IJS in a dose-dependent manner and reversed the low contractile state (LCS) of IJS induced by low Ca²⁺, adrenaline, and atropine respectively. There were synergistic effects on contractivity of IJS between ardipusilloside-I and ACh, high Ca²⁺, and histamine, respectively. Ardipusilloside-I could stimulate the phosphorylation of MLC₂₀ and Mg²⁺-ATPase activities of Ca²⁺- dependent phosphorylated myosin. Ardipusilloside-I also stimulated the gastric emptying and intestinal transit in normal and constipated rats in vivo, respectively, and increased the MLCK expression in the jejuna of constipation-predominant rats. Briefly, the findings demonstrated that ardipusilloside-I could effectively excite gastrointestinal motility in vitro and in vivo.


Subject(s)
Animals , Rats , Ardisia , Atropine , Blotting, Western , Epinephrine , Gastric Emptying , Gastrointestinal Motility , Histamine , In Vitro Techniques , Muscle, Smooth , Myosin Light Chains , Myosin-Light-Chain Kinase , Myosins , Phosphorylation , Saponins
6.
The Korean Journal of Physiology and Pharmacology ; : 1-9, 2017.
Article in English | WPRIM | ID: wpr-728263

ABSTRACT

Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-α, IL-1β, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.


Subject(s)
Animals , Rats , Constipation , Cytokines , Diarrhea , Herbal Medicine , Inflammation , Interleukin-6 , Myosin Light Chains , Myosin-Light-Chain Kinase , NF-kappa B , Phosphorylation , Plasma , RNA, Messenger
7.
The Korean Journal of Physiology and Pharmacology ; : 99-106, 2017.
Article in English | WPRIM | ID: wpr-728252

ABSTRACT

Obesity is a critical risk factor for the hypertension. Although angiotensin II (Ang II) in obese individuals is known to be upregulated in obesity-induced hypertension, direct evidence that explains the underlying mechanism for increased vascular tone and consequent increase in blood pressure (BP) is largely unknown. The purpose of this study is to investigate the novel mechanism underlying Ang II-induced hyper-contractility and hypertension in obese rats. Eight-week old male Sprague-Dawley rats were fed with 60% fat diet or normal diet for 4 months. Body weight, plasma lipid profile, plasma Ang II level, BP, Ang II-induced vascular contraction, and expression of regulatory proteins modulating vascular contraction with/without Ang II stimulation were measured. As a result, high fat diet (HFD) accelerated age-dependent body weight gaining along with increased plasma Ang II concentration. It also increased BP and Ang II-induced aortic contraction. Basal expression of p-CPI-17 and myosin light chain (MLC) kinase was increased by HFD along with increased phosphorylation of MLC. Ang II-induced phosphorylation of CPI-17 and MLC were also higher in HFD group than control group. In conclusion HFD-induced hypertension is through at least in part by increased vascular contractility via increased expression and activation of contractile proteins and subsequent MLC phosphorylation induced by increased Ang II.


Subject(s)
Animals , Humans , Male , Rats , Angiotensin II , Angiotensins , Blood Pressure , Body Weight , Contractile Proteins , Diet , Diet, High-Fat , Hypertension , Myosin Light Chains , Obesity , Phosphorylation , Phosphotransferases , Plasma , Rats, Sprague-Dawley , Risk Factors , Up-Regulation
8.
Journal of Neurogastroenterology and Motility ; : 213-225, 2016.
Article in English | WPRIM | ID: wpr-84977

ABSTRACT

An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.


Subject(s)
Actin Cytoskeleton , Calcium , Gastrointestinal Motility , Gastrointestinal Tract , Muscle, Smooth , Myofibrils , Myosin Light Chains , Myosin-Light-Chain Phosphatase , Neuroeffector Junction , Neurotransmitter Agents , Phosphorylation , Protein Kinases , Signal Transduction , Synaptic Transmission
9.
Psychiatry Investigation ; : 232-238, 2016.
Article in English | WPRIM | ID: wpr-61681

ABSTRACT

OBJECTIVE: To study whether the effects of olanzapine on gastrointestinal motility is related to the serotonin antagonism and myosin light chain kinase. METHODS: Male Sprague-Dawley rats were randomly divided into four groups. Olanzapine gavage was performed for each treatment group during the course of 30 continuous days, while the same volume of saline was given to the rats in the control group. Defecation of the rats was observed on days 7 and 30 after olanzapine gavage. The effects of olanzapine on contraction of colonic smooth muscles were observed in ex vivo experiments. A Western blot was used to evaluate expression levels of the serotonin transporter (SERT) and MLCK in colon segments of the rats. RESULTS: ResultsaaCompared to the control group, 5-160 µM of olanzapine could inhibit dose-dependently the contraction of colonic smooth muscle ex vivo experiments. The maximum smooth muscle contraction effects of 5-HT and acetylcholine significantly decreased after treatment with 40-160 µM of olanzapine. Constipation was found in the olanzapine-treated rats on day 7 and have sustained day 30 after gavage. Expression of MLCK in olanzapine-treated rats was significantly decreased, whereas the expression of SERT significantly increased on the day 7, then significantly decreased on the day 30 after olanzapine gavage. CONCLUSION: SERT and MLCK may involve in the inhibition of colonic contraction induced by olanzapine.


Subject(s)
Animals , Humans , Male , Rats , Acetylcholine , Antipsychotic Agents , Blotting, Western , Colon , Constipation , Defecation , Gastrointestinal Motility , Muscle, Smooth , Myosin Light Chains , Myosin-Light-Chain Kinase , Myosins , Rats, Sprague-Dawley , Serotonin Plasma Membrane Transport Proteins , Serotonin
10.
Braz. j. med. biol. res ; 47(10): 826-833, 10/2014. graf
Article in English | LILACS | ID: lil-722174

ABSTRACT

O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.


Subject(s)
Animals , Male , Muscle, Smooth, Vascular/physiology , Myosin Light Chains/metabolism , Protein Processing, Post-Translational/physiology , Vasoconstriction/physiology , Aorta, Thoracic , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/pharmacology , Acylation/drug effects , Acylation/physiology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Azepines/pharmacology , Blotting, Western , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Oxazoles/pharmacology , Oximes/pharmacology , Phenylcarbamates/pharmacology , Phenylephrine/agonists , Phosphorylation/drug effects , Phosphorylation/physiology , Rats, Wistar , Ribonucleotides/pharmacology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , beta-N-Acetylhexosaminidases/antagonists & inhibitors
11.
Chinese Journal of Hepatology ; (12): 281-284, 2014.
Article in Chinese | WPRIM | ID: wpr-314053

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of salvianolic acid B (Sal B) on endothelin-1 (ET1)-induced contraction and cytoskeleton reorganization of rat hepatic stellate cells (HSCs).</p><p><b>METHODS</b>HSCs were collected from Sprague-Dawley rats by in situ perfusion with pronase E and isolated by density-gradient centrifugation with Nycodenz. Cells were treated with ET-1, with or without Sal B or Y-27632 (a specific inhibitor of rho-associated protein kinases) pretreatment. HSC contraction was evaluated by collagen gel contraction assay. Cytoskeletal reorganization in response to ET-1 was evaluated by detecting changes in phosphorylation of myosin light chain 2 (MLC2) using glycerol-urea PAGE and the Odyssey Infrared Imaging System. Changes in actin stress fiber polymerization were detected by FITC-labeled phalloidin. Differences between the various cell treatment/pretreatment groups were statistically analyzed.</p><p><b>RESULTS</b>Compared to the untreated control cells, the lattice area of ET-1-treated cells showed significant shrinkage (76.89% ± 3.84% vs. 37.10% ± 5.10%; P less than 0.01). Pretreatment with 105 M Sal B or 105 M Y-27632 significantly reduced ET-1-induced contraction (67.01% ± 4.14% and 77.28% ± 2.00%, respectively; bothP less than 0.01 vs. the ET-1-treated cells). The untreated control cells showed a basal MLC2 phosphorylation of (0.35 ± 0.05) mol PO4/mol MLC2. In contrast, ET-1 treatment elicited a rapid and sustained MLC2 phosphorylation, which was (0.87 ± 0.04) mol PO₄/mol MLC2 at 5 min post-treatment and with the maximal level of (0.96 ± 0.04) mol PO₄/mol MLC2 detected at 30 min post-treatment. The Sal B pretreatment led to a significant decrease in ET-1-induced MLC2 phosphorylation (by 63.1%) and an obvious disassembly of actin stress fibers.</p><p><b>CONCLUSION</b>Sal B effectively inhibits ET-1-induced rat HSC contraction, through its suppressive effects on MLC2 phosphorylation and promotion of the disassembly of actin stress fibers.</p>


Subject(s)
Animals , Male , Rats , Actins , Metabolism , Benzofurans , Pharmacology , Cardiac Myosins , Metabolism , Cell Shape , Cells, Cultured , Cytoskeleton , Endothelin-1 , Pharmacology , Hepatic Stellate Cells , Cell Biology , Myosin Light Chains , Metabolism , Phosphorylation , Rats, Sprague-Dawley
12.
Chinese journal of integrative medicine ; (12): 216-223, 2014.
Article in English | WPRIM | ID: wpr-262691

ABSTRACT

<p><b>OBJECTIVE</b>To test whether tanshinone II A (Tan II A), a highly valued herb derivative to treat vascular diseases in Chinese medicine, could protect endothelial cells from bacterial endotoxin (lipopolysaccharides, LPS)-induced endothelial injury.</p><p><b>METHODS</b>Endothelial cell injury was induced by treating human umbilical vein endothelial cells (HUVECs) with 0.2 μg/mL LPS for 24 h. Y27632 and valsartan were used as positive controls. The effects of tanshinone II A on the LPS-induced cell viability and apoptosis rate of HUVECs were tested by flow cytometry, cell migration by transwell, adhesion by a 96-well plate pre-coated with vitronectin and cytoskeleton reorganization by immunofluorescence assay. Rho/Rho kinase (ROCK) pathway-associated gene and protein expression were examined by microarray assay; quantitative real-time polymerase chain reaction and Western blotting were used to confirm the changes observed by microarray.</p><p><b>RESULTS</b>Tan II A improved cell viability, suppressed apoptosis and protected cells from LPS-induced reductions in cell migration and adhesion at a comparable magnitude to that of Y27632 and valsartan. Tan II A, Y27632 and valsartan also normalized LPS-induced actomyosin contraction and vinculin protein aggregation. A microarray assay revealed increased levels of fibronectin, integrin A5 (ITG A5), Ras homolog gene family member A (RhoA), myosin light chain phosphatase, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K, or PIP2 in Western blotting), focal adhesion kinase, vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in the damaged HUVECs, which were attenuated to different degrees by Tan II A, Y27632 and valsartan.</p><p><b>CONCLUSION</b>Tan II A exerted a strong protective effect on HUVECs, and the mechanism was caused, at least in part, by a blockade in the Rho/ROCK pathway, presumably through the down-regulation of ITG A5.</p>


Subject(s)
Humans , Apoptosis , Cell Adhesion , Cell Movement , Cell Shape , Cell Survival , Cytoprotection , Cytoskeleton , Metabolism , Abietanes , Chemistry , Pharmacology , Down-Regulation , Genetics , Human Umbilical Vein Endothelial Cells , Pathology , Integrin alphaV , Metabolism , Lipopolysaccharides , Myosin Light Chains , Metabolism , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 4,5-Diphosphate , Metabolism , Protective Agents , Pharmacology , Signal Transduction , Up-Regulation , Genetics , Vinculin , Metabolism , rho GTP-Binding Proteins , Metabolism , rho-Associated Kinases , Metabolism
13.
Braz. j. med. biol. res ; 46(7): 574-579, ago. 2013. tab, graf
Article in English | LILACS | ID: lil-682398

ABSTRACT

Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.


Subject(s)
Animals , Male , Calcium/metabolism , Lymph/physiology , Mesenteric Artery, Superior/physiopathology , Muscle, Smooth, Vascular/physiopathology , Myosin-Light-Chain Kinase/physiology , Shock, Hemorrhagic/physiopathology , Muscle Contraction , Mesenteric Artery, Superior/metabolism , Muscle, Smooth, Vascular/metabolism , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/analysis , Random Allocation , Rats, Wistar , Shock, Hemorrhagic/enzymology
14.
Experimental & Molecular Medicine ; : 521-528, 2012.
Article in English | WPRIM | ID: wpr-211935

ABSTRACT

Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.


Subject(s)
Animals , Actin Cytoskeleton/drug effects , Actins/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Chickens , Chondrogenesis/drug effects , Cytochalasin D/pharmacology , Mesoderm/cytology , Myosin Light Chains/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Phosphorylation , Staurosporine/pharmacology , Stress Fibers/drug effects
15.
Korean Circulation Journal ; : 406-413, 2012.
Article in English | WPRIM | ID: wpr-33166

ABSTRACT

BACKGROUND AND OBJECTIVES: Recent studies indicate that in response to vasoconstrictor stimuli, the small GTPase RhoA and its down-stream effector, Rho-associated kinase 2 (ROCK)/Rho-kinase, are associated with hypercontraction of the vascular smooth muscle of coronary arteries through augmentation of myosin light chain phosphorylation and Ca2+ sensitization. Expression of ROCK/Rho-kinase mRNA was significantly increased and up-regulated in the spastic coronary artery in a porcine model, and a specific inhibitor of ROCK/Rho-kinase inhibited coronary artery spasm in humans. We therefore explored the role of ROCK2 polymorphisms in the pathogenesis of vasospastic angina (VA). SUBJECTS AND METHODS: We studied 106 patients with VA who exhibited spontaneous or provoked coronary spasm during coronary angiography and compared the prevalence of ROCK2 polymorphisms between this group of patients with VA and controls whose angiograms were normal, and in whom the ergonovine test did not cause spasm (n=107). Five single nucleotide polymorphisms (SNPs) of the ROCK2 gene were selected. SNPs were genotyped by high-resolution melting. Linkage disequilibrium and haplotype analyses were performed using the SHEsis program. RESULTS: The prevalence of genotypes of the 5 interesting SNPs in patients with VA was not different from that in the control group. In haplotype analysis, the haplotype G-T-C-T-G (in order of rs978906, rs2271621, rs2230774, rs1515210, and rs3771106) was significantly associated with a decreased risk of VA (p=0.007). CONCLUSION: The haplotype G-T-C-T-G in the ROCK2 gene had a protective effect against VA, suggesting the involvement of ROCK2 in VA pathogenesis.


Subject(s)
Humans , Coronary Angiography , Coronary Vasospasm , Coronary Vessels , Ergonovine , Freezing , Genotype , GTP Phosphohydrolases , Haplotypes , Linkage Disequilibrium , Muscle Spasticity , Muscle, Smooth, Vascular , Myosin Light Chains , Phosphorylation , Polymorphism, Single Nucleotide , Prevalence , rho-Associated Kinases , RNA, Messenger , Spasm
16.
The Korean Journal of Physiology and Pharmacology ; : 171-177, 2011.
Article in English | WPRIM | ID: wpr-727885

ABSTRACT

Tonic smooth muscle exhibit the latch phenomenon: high force at low myosin regulatory light chains (MRLC) phosphorylation, shortening velocity (Vo), and energy consumption. However, the kinetics of MRLC phosphorylation and cellular activation in phasic smooth muscle are unknown. The present study was to determine whether Ca(2+)-stimulated MRLC phosphorylation could suffice to explain the agonist- or high K(+)-induced contraction in a fast, phasic smooth muscle. We measured myoplasmic [Ca2+], MRLC phosphorylation, half-time after step-shortening (a measure of Vo) and contractile stress in rabbit urinary bladder strips. High K(+)-induced contractions were phasic at both 22degrees C and 37degrees C: myoplasmic [Ca2+], MRLC phosphorylation, 1/half-time, and contractile stress increased transiently and then all decreased to intermediate values. Carbachol (CCh)-induced contractions exhibited latch at 37degrees C: stress was maintained at high levels despite decreasing myoplasmic [Ca2+], MRLC phosphorylation, and 1/half-time. At 22degrees C CCh induced sustained elevations in all parameters. 1/half-time depended on both myoplasmic [Ca2+] and MRLC phosphorylation. The steady-state dependence of stress on MRLC phosphorylation was very steep at 37degrees C in the CCh- or K(+)-depolarized tissue and reduced temperature flattend the dependence of stress on MRLC phosphorylation compared to 37degrees C. These data suggest that phasic smooth muscle also exhibits latch behavior and latch is less prominent at lower temperature.


Subject(s)
Carbachol , Contracts , Kinetics , Muscle, Smooth , Myosin Light Chains , Phosphorylation , Urinary Bladder
17.
Chinese Journal of Burns ; (6): 145-149, 2011.
Article in Chinese | WPRIM | ID: wpr-257863

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of combination of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) on intestinal epithelial barrier function.</p><p><b>METHODS</b>The Caco-2 monolayers were cultured in DMEM nutrient solution, and then they were inoculated in 24-well or 6-well plate with Transwell inserts.They were divided into control group (ordinary treatment), IFN-γ group (with addition of 10 ng/mL IFN-γ), TNF-α group (with addition of 10 ng/mL TNF-α), and IFN-γ plus TNF-α group (with addition of 10 ng/mL TNF-α and 10 ng/mL IFN-γ). Monolayers inoculated in 24-well plate were collected for determination of transepithelial electrical resistance (TER) with an ohmmeter at post treatment hour (PTH) 0, 6, 12, 24, 36, and 48, the permeability of monolayers with fluorescein isothiocyanate-labeled dextran (FITC-dextran) tracer method at PTH 48, the distribution and morphological change of tight junction occludin with immunofluorescence assay at PTH 48. Monolayers inoculated in 6-well plate were collected for determination of protein expression of occludin, myosin light chain kinase (MLCK), and phosphorylated MLC (pMLC) with Western blot at PTH 24. Data were processed with one-way analysis of variance and t test.</p><p><b>RESULTS</b>(1) There was no obvious difference in TER in control group at each time point (F = 0.86, P > 0.05). TER in IFN-γ group and TNF-α group were gradually decreased during PTH 6-48, but showed no statistical difference as compared with that at PTH 0 (with F value respectively 1.69, 2.47, P values all above 0.05). TER in IFN-γ plus TNF-α group was significantly decreased from PTH 24 as compared with that at PTH 0 (t = 4.97, P < 0.05) and that in each of the other three groups (F = 11.54, P < 0.05). (2) The permeability of monolayers in IFN-γ plus TNF-α group [(1197 ± 215)pmol] was significantly higher than that in control group, IFN-γ group, and TNF-α group [(303 ± 93), (328 ± 76), (797 ± 177) pmol, with t value respectively 4.8, 5.0, 6.9, P values all below 0.01]. (3) There was no statistical difference in occludin expression at PTH 24 among four groups (F = 0.26, P > 0.05). The occludin in control group at PTH 48 was regular in arrangement, while that in IFN-γ and TNF-α groups was irregular in arrangement. The arrangement of occludin in IFN-γ plus TNF-α group at PTH 48 was interrupted, with obvious redistribution in cytoplasm. (4) The protein expression of pMLC in IFN-γ plus TNF-α group (0.95 ± 0.05) was significantly higher than that in control group, IFN-γ group, or TNF-α group (0.57 ± 0.12, 0.56 ± 0.07, 0.59 ± 0.10, respectively, F = 17.97, P < 0.01). The protein expression of MLCK in IFN-γ plus TNF-α group (1.57 ± 0.36) was also significantly higher than that in control, IFN-γ, TNF-α groups (0.85 ± 0.18, 1.04 ± 0.23, 1.00 ± 0.07, respectively, F = 9.05, P < 0.05).</p><p><b>CONCLUSIONS</b>Combination of IFN-γ and TNF-α can induce intestinal epithelial barrier dysfunction by up-regulating MLCK protein expression and promoting MLC phosphorylation.</p>


Subject(s)
Humans , Caco-2 Cells , Epithelial Cells , Metabolism , Interferon-gamma , Pharmacology , Intestinal Mucosa , Cell Biology , Membrane Proteins , Metabolism , Myosin Light Chains , Metabolism , Myosin-Light-Chain Kinase , Metabolism , Occludin , Tumor Necrosis Factor-alpha , Pharmacology
18.
Chinese Journal of Burns ; (6): 334-335, 2010.
Article in Chinese | WPRIM | ID: wpr-305587

ABSTRACT

After a series of studies, we found that the intestinal permeability was increased, tight junction protein (zonula occluden-1) obviously decreased and redistributed, accompanied by an increase in expression of myosin light chain (MLC) phosphorylation in severely burned rats. After using inhibitor of MLC kinase (ML-9 2 mg/kg) or of Rho-associated kinase (Y-27632 2 mg/kg), above-mentioned changes could be alleviated. Therefore, to regulate the MLC phosphorylation of tight junction protein and perijunctional actin-myosin ring may be one of the key links to lessen the intestinal epithelium permeability after burn injury.


Subject(s)
Animals , Rats , Burns , Metabolism , Intestinal Mucosa , Metabolism , Intestines , Metabolism , Membrane Proteins , Metabolism , Myosin Light Chains , Metabolism , Permeability , Phosphoproteins , Metabolism , Phosphorylation , Zonula Occludens-1 Protein , rho-Associated Kinases , Metabolism
19.
Biol. Res ; 42(1): 121-132, 2009. ilus
Article in English | LILACS | ID: lil-519091

ABSTRACT

Skeletal muscles have the potential to regenerate by activation of quiescent satellite cells, however, the molecular signature that governs satellite cells during muscle regeneration is not well defined. Myosin light chains (Myls) are sarcomere-related proteins as traditional regulator of muscle contraction. In this report, we studied the possible role of Myl in the proliferation of skeletal muscle-derived myoblasts. Compared to diaphragm-derived myoblasts, the extraocular muscle-derived myoblasts with lower levels of Myl proliferated faster, maintained a longer proliferation phase, and formed more final myotubes. It was found that blockading Myl with anti-Myl antibody or knockdown of Myll by siRNA targeted against Myll could enhance the myoblast proliferation and delay the differentiation of myoblasts. Our results suggested that Myl, likely Myll, can negatively affect myoblast proliferation by facilitating myoblast withdrawal from cell cycle and differentiation.


Subject(s)
Animals , Mice , Cell Proliferation , Diaphragm/cytology , Myoblasts/physiology , Myosin Light Chains/physiology , Oculomotor Muscles/cytology , Regeneration/physiology , Blotting, Western , Immunohistochemistry , Reverse Transcriptase Polymerase Chain Reaction
20.
The Korean Journal of Physiology and Pharmacology ; : 201-207, 2009.
Article in English | WPRIM | ID: wpr-728734

ABSTRACT

Our previous study demonstrated that flavone inhibits vascular contractions by decreasing the phosphorylation levelof the myosin phosphatase target subunit (MYPT1). In the present study, we hypothesized that flavone attenuates vascular contractions through the inhibition of the RhoA/Rho kinase pathway. Rat aortic rings were denuded of endothelium, mounted in organ baths, and contracted with either 30 nM U46619 (a thromboxane A2 analogue) or 8.0 mM NaF 30 min after pretreatment with either flavone (100 or 300 micrometer) or vehicle. We determined the phosphorylation level of the myosin light chain (MLC20), the myosin phophatase targeting subunit 1 (MYPT1) and the protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phophatase of 17-kDa (CPI17) by means of Western blot analysis. Flavone inhibited, not only vascular contractions induced by these contractors, but also the levels of MLC20 phosphorylation. Furthermore, flavone inhibited the activation of RhoA which had been induced by either U46619 or NaF. Incubation with flavone attenuated U46619-or NaF-induced phosphorylation of MYPT1(Thr855) and CPI17(Thr38), the downstream effectors of Rho-kinase. In regards to the Ca2+-free solution, flavone inhibited the phosphorylation of MYPT1(Thr855) and CPI17(Thr38), as well as vascular contractions induced by U46619. These results indicate that flavone attenuates vascular contractions, at least in part, through the inhibition of the RhoA/Rho-kinase pathway.


Subject(s)
Animals , Rats , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid , Baths , Blotting, Western , Contracts , Endothelium , Flavones , Myosin Light Chains , Myosin-Light-Chain Phosphatase , Myosins , Phosphorylation , Phosphotransferases , Protein Kinases , rho-Associated Kinases , Thromboxane A2 , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL